SULJE VALIKKO

avaa valikko

Bonfigli Roberto Bonfigli | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 2 tuotetta
Haluatko tarkentaa hakukriteerejä?



Machine Learning Approaches to Non-Intrusive Load Monitoring
Roberto Bonfigli; Stefano Squartini
Springer Nature Switzerland AG (2019)
Pehmeäkantinen kirja
51,40
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Machine Learning Approaches to Non-Intrusive Load Monitoring
Bonfigli Roberto Bonfigli; Squartini Stefano Squartini
Springer Nature B.V. (2019)
Pehmeäkantinen kirja
117,30
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Machine Learning Approaches to Non-Intrusive Load Monitoring
51,40 €
Springer Nature Switzerland AG
Sivumäärä: 135 sivua
Asu: Pehmeäkantinen kirja
Painos: 1st ed. 2020
Julkaisuvuosi: 2019, 14.11.2019 (lisätietoa)
Kieli: Englanti
Tuotesarja: SpringerBriefs in Energy
Research on Smart Grids has recently focused on the energy monitoring issue, with the objective of maximizing the user consumption awareness in building contexts on the one hand, and providing utilities with a detailed description of customer habits on the other. In particular, Non-Intrusive Load Monitoring (NILM), the subject of this book, represents one of the hottest topics in Smart Grid applications. NILM refers to those techniques aimed at decomposing the consumption-aggregated data acquired at a single point of measurement into the diverse consumption profiles of appliances operating in the electrical system under study. 

This book provides a status report on the most promising NILM methods, with an overview of the publically available dataset on which the algorithm and experiments are based. Of the proposed methods, those based on the Hidden Markov Model (HMM) and the Deep Neural Network (DNN) are the best performing and most interesting from the future improvement point of view. One method from each category has been selected and the performance improvements achieved are described. Comparisons are made between the two reference techniques, and pros and cons are considered. In addition, performance improvements can be achieved when the reactive power component is exploited in addition to the active power consumption trace.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 4-5 viikossa
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Machine Learning Approaches to Non-Intrusive Load Monitoringzoom
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste