SULJE VALIKKO

avaa valikko

A.S. Fokas | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 5 tuotetta
Haluatko tarkentaa hakukriteerejä?



Painleve Transcendents - The Riemann-Hilbert Approach
Athanassios S. Fokas; Alexander R. Its; Andrei A. Kapaev; Victor Yu Novokshenov
American Mathematical Society (2006)
Kovakantinen kirja
134,40
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Algebraic Aspects of Integrable Systems - In Memory of Irene Dorfman
A.S. Fokas; I.M. Gelfand
Springer-Verlag New York Inc. (2011)
Pehmeäkantinen kirja
49,60
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Nonlinear Processes in Physics - Proceedings of the III Potsdam — V Kiev Workshop at Clarkson University, Potsdam, NY, USA, Augu
A.S. Fokas; D.J. Kaup; A.C. Newell; V.E. Zakharov
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG (2011)
Pehmeäkantinen kirja
97,90
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Important Developments in Soliton Theory
A.S. Fokas (ed.); V.E. Zakharov (ed.)
Springer (2012)
Pehmeäkantinen kirja
49,60
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Algebraic Aspects of Integrable Systems - In Memory of Irene Dorfman
A.S. Fokas; I.M. Gelfand
Birkhauser Boston Inc (1996)
Kovakantinen kirja
78,50
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Painleve Transcendents - The Riemann-Hilbert Approach
134,40 €
American Mathematical Society
Sivumäärä: 553 sivua
Asu: Kovakantinen kirja
Painos: ILLUSTRATED ED
Julkaisuvuosi: 2006, 30.10.2006 (lisätietoa)
Kieli: Englanti
At the turn of the twentieth century, the French mathematician Paul Painleve and his students classified second order nonlinear ordinary differential equations with the property that the location of possible branch points and essential singularities of their solutions does not depend on initial conditions. It turned out that there are only six such equations (up to natural equivalence), which later became known as Painleve I-VI. Although these equations were initially obtained answering a strictly mathematical question, they appeared later in an astonishing (and growing) range of applications, including, e.g., statistical physics, fluid mechanics, random matrices, and orthogonal polynomials. Actually, it is now becoming clear that the Painleve transcendents (i.e., the solutions of the Painleve equations) play the same role in nonlinear mathematical physics that the classical special functions, such as Airy and Bessel functions, play in linear physics.The explicit formulas relating the asymptotic behaviour of the classical special functions at different critical points play a crucial role in the applications of these functions. It is shown in this book that even though the six Painleve equations are nonlinear, it is still possible, using a new technique called the Riemann-Hilbert formalism, to obtain analogous explicit formulas for the Painleve transcendents. This striking fact, apparently unknown to Painleve and his contemporaries, is the key ingredient for the remarkable applicability of these 'nonlinear special functions'.The book describes in detail the Riemann-Hilbert method and emphasizes its close connection to classical monodromy theory of linear equations as well as to modern theory of integrable systems. In addition, the book contains an ample collection of material concerning the asymptotics of the Painleve functions and their various applications, which makes it a good reference source for everyone working in the theory and applications of Painleve equations and related areas.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tuote on tilapäisesti loppunut ja sen saatavuus on epävarma. Seuraa saatavuutta.
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Painleve Transcendents - The Riemann-Hilbert Approach
Näytä kaikki tuotetiedot
ISBN:
9780821836514
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste