J. B. Friedlander; A. Perelli; D.R. Heath-Brown; C. Viola; H. Iwaniec; J. Kaczorowski Springer-Verlag Berlin and Heidelberg GmbH & Co. KG (2006) Pehmeäkantinen kirja
A.Van Wijngaarden; B.J. Mailloux; J.E.L. Peck; C. H. A. Koster; C.H. Lindsey; M. Sintzoff; L.G.L.T. Meertens; R.G Fisker Springer-Verlag Berlin and Heidelberg GmbH & Co. KG (1976) Pehmeäkantinen kirja
D. Miannay; J.C. Dupré; J.M. Georges; M. Bornert; M. Cherkaoui; R. Schirrer; T. Thomas; S. Pommier; A. Pineau; P Costa Elsevier Science & Technology (2000) Kovakantinen kirja
A. J. Elwood; Robert Shearman; A. C. Wise; A. K. Benedict; Cavan Scott; Guy Adams; Lavie Tidhar; Muriel Gray; Pau Finch Titan Books Ltd (2023) Pehmeäkantinen kirja
Robert M. Arnold; Anthony L. Back; Elise C. Carey; James A. Tulsky; Gordon J. Wood; Holly B. Yang Cambridge University Press (2024) Pehmeäkantinen kirja
B. Liskov; R. Atkinson; T. Bloom; E. Moss; J. C. Schaffert; R. Scheifler; A. Snyder Springer-Verlag Berlin and Heidelberg GmbH & Co. KG (1981) Pehmeäkantinen kirja
A J van Winkelhoff; F W a Frankemolen; K L Weerheijm; B. Houwink; G a van der Weijden; C. Penning; St Conserverende Tandhe Bohn Stafleu Van Loghum (2000) Pehmeäkantinen kirja
S.R. Bell; J.-L. Brylinski; A.T. Huckleberry; R. Narasimhan; C. Okonek; G. Schumacher; A. Van de Ven; S. Zucker Springer-Verlag Berlin and Heidelberg GmbH & Co. KG (1997) Pehmeäkantinen kirja
Peter McDonald; C A Morgan; J.F.D. Greenhalgh; C. Morgan; R Edwards; Liam Sinclair; Robert Wilkinson Pearson Education Limited (2011) Pehmeäkantinen kirja
Ezekiel J. Emanuel; Christine C. Grady; Robert A. Crouch; Reidar K. Lie; Franklin G. Miller; David D. Wendler Oxford University Press Inc (2011) Pehmeäkantinen kirja
The four papers collected in this book discuss advanced results in analytic number theory, including recent achievements of sieve theory leading to asymptotic formulae for the number of primes represented by suitable polynomials; counting integer solutions to Diophantine equations, using results from algebraic geometry and the geometry of numbers; the theory of Siegel's zeros and of exceptional characters of L-functions; and an up-to-date survey of the axiomatic theory of L-functions introduced by Selberg.