SULJE VALIKKO

avaa valikko

A Yanushauskas | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 2 tuotetta
Haluatko tarkentaa hakukriteerejä?



The Oblique Derivative Problem of Potential Theory
A.T. Yanushauskas
Kluwer Academic Publishers Group (1989)
Kovakantinen kirja
131,20
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Topics In Polynomials Of One And Several Variables And Their Applications: Volume Dedicated To The Memory Of P L Chebyshev (1821
Themistocles M Rassias; A Yanushauskas; Hari M Srivastava
World Scientific Publishing Co Pte Ltd (1993)
Kovakantinen kirja
250,30
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
The Oblique Derivative Problem of Potential Theory
131,20 €
Kluwer Academic Publishers Group
Sivumäärä: 258 sivua
Asu: Kovakantinen kirja
Julkaisuvuosi: 1989, 01.08.1989 (lisätietoa)
An important part of the theory of partial differential equations is the theory of boundary problems for elliptic equations and systems of equations. Among such problems those of greatest interest are the so-called non-Fredholm boundary prob lems, whose investigation reduces, as a rule, to the study of singular integral equa tions, where the Fredholm alternative is violated for these problems. Thanks to de velopments in the theory of one-dimensional singular integral equations [28, 29], boundary problems for elliptic equations with two independent variables have been completely studied at the present time [13, 29], which cannot be said about bound ary problems for elliptic equations with many independent variables. A number of important questions in this area have not yet been solved, since one does not have sufficiently general methods for investigating them. Among the boundary problems of great interest is the oblique derivative problem for harmonic functions, which can be formulated as follows: In a domain D with sufficiently smooth boundary r find a harmonic function u(X) which, on r, satisfies the condition n n au . . .: . . ai (X) ax. = f (X), . . .: . . [ai (X)]2 = 1, i=l t i=l where aI, . . ., an, fare sufficiently smooth functions defined on r. Obviously the left side of the boundary condition is the derivative of the function u(X) in the direction of the vector P(X) with components al (X), . . ., an(X)."

Translated by: N. Stein

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tuotteella on huono saatavuus ja tuote toimitetaan hankintapalvelumme kautta. Tilaamalla tämän tuotteen hyväksyt palvelun aloittamisen. Seuraa saatavuutta.
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
The Oblique Derivative Problem of Potential Theoryzoom
Näytä kaikki tuotetiedot
ISBN:
9780306110238
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste