J. B. Friedlander; A. Perelli; D.R. Heath-Brown; C. Viola; H. Iwaniec; J. Kaczorowski Springer-Verlag Berlin and Heidelberg GmbH & Co. KG (2006) Pehmeäkantinen kirja
David H. Barlow; Todd J. Farchione; Shannon Sauer-Zavala; Heather Murray Latin; Kristen K. Ellard; Jacqueline R. Bullis Oxford University Press Inc (2018) Pehmeäkantinen kirja
Linda Heath; R. Scott Tindale; John Edwards; Emil J. Posavac; Fred B. Bryant; Eaaron Henderson-King; Yola Suarez-Balcazar Springer Science+Business Media (1994) Kovakantinen kirja
Linda Heath; R. Scott Tindale; John Edwards; Emil J. Posavac; Fred B. Bryant; Eaaron Henderson-King; Yola Suarez-Balcazar Springer-Verlag New York Inc. (2013) Pehmeäkantinen kirja
Victor C. Ottati; R. Scott Tindale; John Edwards; Fred B. Bryant; Linda Heath; Yolanda Suarez-Balcazar; Emil J. Posavac Springer Science+Business Media (2002) Kovakantinen kirja
Fred B. Bryant; John Edwards; R. Scott Tindale; Emil J. Posavac; Linda Heath; Eaaron Henderson-King; Yola Suarez-Balcazar Springer Science+Business Media (1992) Kovakantinen kirja
Victor C. Ottati; R. Scott Tindale; John Edwards; Fred B. Bryant; Linda Heath; Yolanda Suarez-Balcazar; Emil J. Posavac Springer-Verlag New York Inc. (2012) Pehmeäkantinen kirja
R. Scott Tindale; Linda Heath; John Edwards; Emil J. Posavac; Fred B. Bryant; Judith Myers; Yolanda Suarez-Balcazar; Hend Springer-Verlag New York Inc. (2013) Pehmeäkantinen kirja
K. A. Gallivan; Michael T. Heath; Esmond Ng; James M. Ortega; Barry W. Peyton; R. J. Plemmons; Charles H. Romine; Sameh Society for Industrial & Applied Mathematics,U.S. (1990) Pehmeäkantinen kirja
Fred B. Bryant; John Edwards; R. Scott Tindale; Emil J. Posavac; Linda Heath; Eaaron Henderson-King; Yola Suarez-Balcazar Springer-Verlag New York Inc. (2013) Pehmeäkantinen kirja
The four papers collected in this book discuss advanced results in analytic number theory, including recent achievements of sieve theory leading to asymptotic formulae for the number of primes represented by suitable polynomials; counting integer solutions to Diophantine equations, using results from algebraic geometry and the geometry of numbers; the theory of Siegel's zeros and of exceptional characters of L-functions; and an up-to-date survey of the axiomatic theory of L-functions introduced by Selberg.